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Abstract. A two-parameter piecewise linear approximation to cubic maps has been proposed 
and analytically investigated. The notion of (n, k )  sequences has been introduced to find 
the exact solutions of the invariant density of our model, via the Frobenius-Perron operator. 
For a one-parameter version of the present map we obtain the exact invariant density and 
the corresponding parameter equation. Our results can be regarded as a generalisation to 
the consequences obtained by Derrida et a1 for the tent map. 

1. Introduction 

Non-linear dissipative systems exhibiting a large number of diverse and complicated 
types of behaviours have been extensively studied by using the iteration functions with 
one critical point [ 1-61. A rich structure of subharmonic bifurcations, periodic doub- 
lings, universal functions, noisy bands and chaos has been found [2]. The dynamical 
properties of the cubic maps with two extrema have attracted much attention in recent 
years [7-lo]. The numerical results as well as the theoretical analysis on such cubic 
maps show up various interesting features which are not found in the unimodal maps. 

In this paper we study a piecewise linear approximation to cubic maps 
O G X S X ,  

x, G x G x2 
X Z G X G l  

(1.1) 

where x, = (1 - b ) / a ,  x2 = (2 - b) /  a, x, and x2 are the critical points o f f ,  and a, b are 
two parameters satisfying 2 < a G 3 and 0 < b < 3 - a. The main interest of the presenta- 
tion focus on finding the exact solutions of the operator equation . 

HP(x)  = P(x)  (1.2) 
where H is the Frobenius-Perron operator corresponding to map ( ( l . l ) ,  and P(x)  is 
an invariant density. Before proceding we first discuss the uniqueness of solutions of 
this operator equation. 

For a class of piecewise continuous, piecewise c1 transformations on the interval 
Jc R with finitely many discontinuities n, Li and Yorke [ l l ,  121 have proved that 
there exist at most n invariant measures. From the theorem 1 of [ l l ]  Grossmann and 
Thomae [ 131 have formulated the following criterion of uniqueness for the invariant 
density. 
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Corollary. Let 7 :  [0, 13 + [0, 11 be a piecewise c2 function such that 

inf Id.r(y)/dyl> 1. 
Y 

Let the set J := { y o ,  y ,  , . . . , y,,} of points, where d.r(y)/dy does not exist, be finite, and 

u, (Y , ) :=(Y, -&,Y ,+&)n(O,  1) & > O  

be the E neighbourhood of any point of discontinuity y,. The invariant density P ( x )  
is unique if there are positive integers n, , n2 for each pair ( y l ,  y,) such that for arbitrarily 
small E > 0 

m(f”l[u~(yl)inf”z[u,(y,)i) $ 0  
where m ( I )  denotes the size of the interval I (Lebesque measure). Thus the uniqueness 
of the invariant density for map (1.1) follows immediately from the corollary stated 
above since the chaotic attractor off  is the whole interval [0, 13 in our cases. 

In the remaining sections we calculate the invariant density through equation (1.2) 
and find the exact solutions of this equation for the (n, k) sequences of map (1.1) (the 
definition of (n, k )  sequences will appear in 0 2) for some special values of parameter 
b. We also derive the corresponding characteristic equations for parameter a, which 
are found to be very useful in understanding the symbolic dynamics for map (1.1) and 
perhaps for the general cubic maps. Finally we make some remarks on the convergence 
of initial densities to the invariant density. 

2. A piecewise linear approximation to cubic maps with one parameter 

When b = (3 - a ) ,  equation (1.1) becomes 
ax + (3 - a) /2  

ax - ( a  + 1)/2 

o < x < x ,  
x, < x < x2 
x , < x < l  

where a is the control parameter which varies between 2 and 3. x, = ( a  - 1)/2a and 
x2 = ( a  + l ) /a  are the critical points of map (2.1). In view of f ( x , )  = 1 and f ( x 2 )  = 0, 
we hereafter take simply 1 and 0 as the critical points for the convenience of manipula- 
tion. The map (2.1) is plotted in figure 1. 

X 

Figure 1. The symmetric piecewise linear approximation to cubic map. x, and x2 are the 
critical points. 
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In order to find the invariant density we introduce the Frobenius-Perron operator 

H P ( x  ) = 2 I [ (d/  dx1.f;’ ( X I  1 I p(f; ( x ) )x [ f; ( x ) 1 (2.2) 
I 

wheref;’(x) are different branches of the inverse o f f ( x )  and x [ f ; ’ ( x ) ]  is the indicator 
function of the branch i. Thus the invariant density P (x )  is determined by the following 
equation 

H P ( x )  = P ( x ) .  (2.3) 

As far as equation (2.1) is concerned, the operator H is 

~~(x)=[~((2~+~+i)/2~)e(f(i)-~)+~((a+i-2~)/2~) 

+ P ( ( ~ X - ~ + U ) / ~ ~ ) ~ ( X - ~ ( O ) ) I / U .  (2.4) 

Since we are only interested in finding the exact solutions of equation (2.3), it is 
reasonable to investigate the conditions under which the invariant density can be 
derived exactly. A careful examination of the geometrical structure of map (2.1) reveals 
that the exact solution may be obtained for those parameter values determined by 

f ” + k ( a ;  X I )  = f ” ( a ;  X I )  i = 1 , 2  (2.5) 

where xl(  = 1)  and x2( =0) are regarded as the critical points of (2.1). When n = 0 one 
has the critical periodic orbits, otherwise the eventually critical periodic orbits, i.e. the 
( n ,  k )  sequences which are defined as 

{ f ’ (  a ;  0 ) ,  i = 1,2,  . . . , n + k - l;f”+k( a ;  0) =f”( a;  0)) (2.6) 

{ f J ( a ; 1 ) , j = l , 2  ,..., n+k- l ; f” ’k (a ; l )= f” (a ; l ) } .  (2.7) 

and 

Equations (2.6) and (2.7) imply that the trajectories fall into the cycle of period k after 
n iterates, starting from xo = 0 or xo = 1, respectively. It is obvious that the properties 
of the ( n ,  k )  sequences may be described successfully in the sense of Metropolis et al 
(MSS) [4]. In the tent map the MSS sequences are the special cases of its ( n ,  k )  sequences 
with n = 0, while in the cubic map the ( n ,  k )  sequences may be described by the 
generalised notation of the MSS sequences. With a more detailed study on the system 
(2.1) one may find that there exist two kinds of ( n ,  k )  sequences; one being the coexisting 
( n ,  k )  sequences as defined by equations (2.6) and (2.7), and the other being the 
so-called isolated sequences. The isolated trajectory passes through two critical points 
of map (2.1) at the same time while two of the coexisting orbits go through their own 
respective critical points. It is easy to see that those ( n ,  k )  sequences generate finite 
partitions on the interval [0,1], and make it possible to find the exact solutions of 
equation (2.3). In what follows we compute the invariant density only for the coexisting 
( n ,  k )  sequences. The calculation for the isolated ( n ,  k )  sequences follows the same 
line discussed here. Now we assume that 

n i k - 1  n+k-1 

P ( x ) = a o +  @(x-f’(O))+ C bj8(x- f ’ (1) ) .  
i .i 

By applying operator H on O(x-fi(O)), one obtains 

H e ( x - f i ( o ) )  =[.le(x-f’+1(~))+2pi- e ( ~ - f ( i ) ) ] / ~  (2.9) 



2720 J Yu and G Hu 

with ai and P i  defined by 

(Yo= 1 

and 

P o =  1 
O<f’(O)<x, 
Xq<fl(O) < 1. 

(2.10) 

(2.11) 

Similarly one has 

He ( x - f j  ( 1 ) ) = [ CY; e ( x - fj+ ( 1 ) ) + 2p; - e ( x - f( 1 ) ) ] U (2.12) 
where CY; and Pi are defined by 

CY;= 1 

CY; = 
O<f l ( l )<x l  or x2<f1(1)<1 {-: x1 <fJ(l) < x2 

and 

p ;=0  

1 0 <fj( 1) < x2 
x2 <fj( 1) < 1. = i o  

(2.13) 

(2.14) 

Since 

we obtain 

n + k - 1  + bj[ CY; e(x  -f j+l(  1)) + 2p; - e (x  -f( 1 ))I/ U. (2.16) 
j= 1 

Substituting (2.8) and (2.16) into (2.3) and comparing the coefficients of e (x  - f ’ ( O ) )  
and 6(x - f ’ (  l)) ,  we finally obtain the characteristic equation 

- (1  - S f l , o ) a ~ ~ ; .  . . aL-,P;)D(n, k;  CY’) W(n, k;  CY, a’) /a” ) (2.17) 
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and the corresponding invariant density 

fl-l 

x c ( a i a i . .  . W ( n ,  k ;  a,  a ' ) e ( x - f ' ( l ) ) / a ' ]  
i = l  

+ ( a o / a " ) ( l -  ~ f l , o ) ( a 1 a 2  * . * %-1)6(X -f"(O)) 
- ( a o / a f l ) ( l  -8f l ,o)(a:a; .  . . W ( n ,  k ;  a, a ' ) e ( x - f " ( l ) )  

- ( ( ~ ; a ; + ~ .  . . ( ~ l , + , - ~ ) D ( n ,  k; a )  W ( n ,  k ;  a, a ' ) 6 ( x - f " " ( l ) ) ] / u i  
(2.18) 

where 
(2.19) 
(2.20) 

n - 1  

1 + ( 1 - 6fl,o) ( 1 - ( a  a2  . . . ai - 1)/ a 
i = l  

(2.21) 

When n = 0 we return to the case of the critical periodic orbits with the parameter 
equation and invariant density being given by 

k - l  

a = 2 + 2 ( 1 - 8 k , l )  a l a 2 . .  . a i - 1 p i / a i + ( a l a 2 .  . . f f k - l ) / u  k 
1=l 

(2.22) 
j = l  

and 

P ( x )  = a o  1 + ( a l a 2 . .  . a i - l ) 6 ( x - f ' ( o ) ) / a i  
i = l  

(2.23) 

( k - l  

) 
k = l  

- 1 (aiai.. . W(0,  k ;  a, a ' ) e ( x - f ' ( l ) ) / a '  . 
i = l  

The special examples of these results are illustrated in figure 2. 
Equations (2.17) and (2.18) provide much information about the dynamical and 

statistical properties of map (2.1). For example, from (2.18) one can study the structure 
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X1 x2 

Figure 2. ( a )  A pair of coexisting periodic critical orbits with n = 0 and k = 3, labelled by 
xz + Lz and x, + R 2 ,  respectively. ( b )  A pair of coexisting eventually periodic critical orbits 
with n = 1 and k = 3, labelled by x2+ L ( L M R )  and x, + R ( R M L ) ,  respectively. 

and the order of the (n ,  k )  sequences via the method developed by Derrida er al for 
the tent map [14]. To uniquely determine the patterns of the ( n ,  k )  sequences in the 
cubic map, one has to divide the iterative map into its three monotonically increasing 
or decreasing regimes: 

L: o < x < x ,  

M :  xl<x<xz 

R :  X q < X < l .  

By means of this notion one may assign each cycle an itinerary representing the order 
in which the point of a definite ( n ,  k )  sequence visits the different regimes of the map 
(2.1). This itinerary generalises the Metropolis symbol which is solely formed by two 
letters R and L. 

3. General remarks on the properties of map (1.1) 

We now study the following map: 
o < x < x ,  
x, < x < x2 
X , < X < l  

(3.1) 

where xl( = (1 - b ) / a )  and x2( = (2 - b ) / a )  are the critical points and a and b are the 
control parameters satisfying 2 < a < 3 and 0 < b < 3 - a. 

In this two-parameter, piecewise linear approximation to the cubic map one can 
discover a richer structure not observed in the one-parameter cubic maps [15-171. 
With parameters a and b changed, the system (3.1) behaves in a very complicated 
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manner, which makes the analytical discussion on its invariant density more difficult. 
Thus in the following we restrict ourselves to the brief analysis on map (3.1) for three 
special values of b. 

Case A: b = (3 - a) /2 .  When the parameter b is chosen to be (3 - a ) / 2  one returns 
to’the situation discussed in § 2. It is easy to see that the invariant density is symmetric 
since the corresponding map is itself symmetric as well. 

Case B: b = 3 - a .  In this case the map (3.1) turns out to be 
a x - a + 3  O < X < X I  

f ( a , x ) =  -ax+a-1  X I  < x < x2 (3.2) [ a x - a + 1  x , < x < l .  

In this peculiar map there is only one critical point ( x  = ( a  - l ) / u ) ,  the other critical 
point (xl = ( a  - 2 ) / a )  iterates to the fixed point ( x f =  1)  in one step. Because of this 
feature there exist no coexisting ( n ,  k )  sequences in (3.2), and its invariant density 
exhibits no symmetry (see figure 3). 

X 

Figure 3. The piecewise linear approximation to the cubic map with one critical point. 

According to the procedure described in § 2 one may easily find the characteristic 
equation and invariant density of the ( n ,  k )  sequences for (3.2). They are 

n - l  

a=2+2(1-Sn, , ) (1-Sn, , )  ( a l a ,  ... a i - , p i ) / a i  
i = l  

and 
n - 1  

P ( X )  = U,[ 1 + ( 1  - an,o)( 1 - an,l) ( ala2  . . . ( ~ ~ - ~ ) e ( x  +yo))/ a i  
i = l  

+ ( 1 - 6 n , , ) ( a , ~ 2 .  . . a n - l ) e ( x - f ” ( 0 ) ) / ( a “ - a n - k T ( n ,  k ) )  
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So far one finds that the parameter a may be obtained through an algebraic equation 
similar to the so-called a autoexpansion in the case of one-dimensional unimodal 
maps. It is easily noticed that not all possible sequences from {a,} and { P I }  contribute 
a solutipn of the parameter equation for a ranging between 2 and 3. Hence a necessary 
condition for admissible sequences can certainly be extracted by analysing the param- 
eter equation. From numerical calculation we suggest that for the admissible (n, k) 
sequences the following condition: 

*(an, a,+, 9 .  ’ .) < (a05 a1 , ’ . -1 
should be satisfied [14]. 

Case C: 0 < b < (3 - a ) / 2  and (3 - a ) / 2  < b < (3 - a ) .  In this case one has a two- 
parameter non-symmetric piecewise linear approximation to the cubic map, which 
exhibits various kinds of orbits such as the isolated (n, k) sequences, coexisting (n, k) 
sequences with different n and k, etc. However, provided that there exists some kind 
of (n, k) sequences for certain values of a and b, one can compute the corresponding 
invariant density via equation (1 -2) by assuming that 

n l + k l - 1  n 2 + k 2 - 1  

1=1  j = 1  
P(x)=u,,+ C a,e(x-f’(o))+ b,e(x-fJ(i)) (3.5) 

for the first (n, k) sequences 

{f’(O), i = 1 , 2 , .  . . , n l +  k l -  l;f”””(O) =f”’(O)} (3.6) 

(3.7) 

starting with x2 = 0, and the second (n, k) sequences 

{f( l ) , j  = 1 , 2 , , .  . , n2+ k2 - l;f”2+k2(l) =fn2(1)} 

beginning from x1 = 1. In principle, the analytical expression of P (x )  can be obtained 
via the Frobenius-Perron operator though the calculation is in fact very tedious. 
Therefore, instead of finding the general results for arbitrary ( n ,  k) sequences we give 
only an example of n 1 = n2 = 0, k, = 4 and k2 = 2; see figure 4. 

X 

Figure 4. Map (3 .1)  and its invariant density at a = 2.2393 and b = 0.1433. The two distinct 
orbits are denoted x, + R and x2 + L*M, respectively. 
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In previous sections we have presented a useful model for cubic maps, which can 
be investigated analytically. The notion of the ( n ,  k )  sequences has been introduced 
to find the exact solution of the invariant density and other features of that model. A 
detailed analysis on the properties of the (n ,  k )  sequences has been conducted, which 
shows that finite partitions on the chaotic region of one-dimensional maps can be 
generated by the (n ,  k )  sequences. These finite partitions enable us to evaluate the 
Stefan matrix [14] of the system considered. Notice that all the ( n ,  k )  sequences are 
unstable no matter what kind of map is considered. This implies that the (n ,  k )  
sequences exist only for those parameter values at which there are no stable orbits of 
the system. Thus one can deduce that the (n ,  k )  sequences may be a particularly 
effective approach to understanding the dynamical properties of the chaotic systems. 

Nevertheless, there is still a problem about the convergence to the invariant density 
for arbitrary densities. Losata et a1 [ 181 have shown that for a class of Markov operators 
acting on an arbitrary space L’(X, X, p )  with a o-finite measure p, the sequences 
{ H“P‘} with normalised P’ converge to a compact set = {PI, P2,  . . . , Pr}.  This implies 
that the Markov operator H is asymptotically periodic if r > 1 or asymptotically stable 
if r = 1. For the Frobenius-Perron operator H, which is induced by map ( l . l ) ,  one 
may easily prove that the operator H is asymptotically stable in our case. First of all 
consider the case of a = 3 and 6 = 0. We may show that H “ P ’ ( x )  + P ( x )  = 1 for all 
initial densities P’( x ) .  

ProoJ: By the definition of the Frobenius-Perron operator, one has 

and therefore 

Let Fi,i2, , , in(x) = & I ( .  . . ( K 1 ( x ) ) .  . .) and 
{ i 1 i 2 . .  . i , ,}.  Then by setting N = 3” one has 

be a permutation of integer sequences 

Since F maps the interval [0,1] onto itself, we have 
N 

lim H ” P ’ ( x )  = lili [ i( P ’ ( F U y i ) ( x ) ) ) ]  = P ( x )  = 1. 
m = l  n-m 

This conclusion is also true for those parameter values of a and 6, determined by the 
( n ,  k )  sequences of map ( l . l ) ,  since the ( n ,  k )  sequences generate finite partitions on 
the interval [0,1] which is the chaotic attractor of map (1.1). In this case the operator 
H can be represented by a finite-dimensional matrix 2. Since 2 is a stochastic 
indecomposable matrix, the largest eigenvalues are of modulus 1 and the largest real 
eigenvalue is 1 [13]. Hence one has 

2 “ P ’ ( x )  -$ P ( x )  

for any initial density P ’ ( x ) .  Here P ( x )  is the invariant density. Thus the exact solution 
given by (2.18) is indeed a unique solution of (1.2) and for all initial densities P ’ ( x ) ,  
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H " P ' ( x )  converges to this exact solution. It can be understood that, due to the finite 
partitions on the interval [0,1] in our situation, equation (1.2) admits a unique solution 
and operator H is asymptotically stable, while the operator equation H P ( x )  = P ( x )  
will not, in general, have a unique solution and the operator H will be asymptotically 
periodic. 
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